BitTorrent and BitTyrant

CS 344G 2/9/2015
Gregory D. Hill

BitTorrent Overview

» Download .torrent file or use magnet URI to get file hash, required metadata
» Get partial list of peers from Tracker or Kademlia-based DHT

» Download file from peers following peer protocol (uses TCP)

» 10 message types described in following slides
keep-alive

choke/unchoke

Interested/not interested

have

bitfield

request

piece

vV v v v v v v Vv

cancel

Basic BitTorrent Protocol

» Handshake with peer, after send bitfield(length, bitfield) message which has
a bit for each piece of the file representing whether that peer has that piece
or not

» have(piece index) message - tell a peer you have piece x

» request(piece index, byte offset, length) to a peer hopefully reciprocated by
a piece(piece index, byte offset, data) which can be aborted with a
cancel(piece index, byte offset, length)

» Send interested() to a peer that has data you want and undo this by sending
them not interested()

Piece Selection

First piece: choose at random until a complete piece downloaded
Normal: Rarest First, try to download piece fewest peers have

Endgame: on last pieces, request all subpieces left from all peers, send
cancels to others when data arrives

BitTorrent Choking

» Refuse to upload to, or choke, all but a few (commonly 4) peers

» Upload even share to these unchoked peers

» Prefer to give to peers who upload most to you (tit-for-tat)

» Every 10 seconds decide which mutually interested peer to unchoke based on best
rolling 20 second average of download rate from peers

» If no reciprocation from an unchoked peer for over a minute, assume snubbed and
don’t upload to them

» In addition, rotate through peers and choose a new one to optimistically
unchoke every 30 seconds, which searches for better peers

» 30 seconds is enough time for them to unchoke you if you upload faster than their
currently unchoked peers

» Once finished downloading, prefer peers you can upload to fastest

Mismatched claims

» In Incentives Build Robustness in BitTorrent, Bram Cohen (creator of
BitTorrent) claims “choking algorithms attempt to achieve pareto efficiency
and that BitTorrent “achieves a higher level of robustness and resource
utilization than any currently known cooperative technique”

» Do incentives build robustness in BitTorrent?, from the University of
Washington say their results “suggest that incentives do not build robustness
in BitTorrent” and that “robustness requires that performance does not
degrade if peers attempt to strategically manipulate the system”

”

Key Figure

=

[
Expected performance

Perfect fairness - ——-- - |

=

g

=

=

Expected download rate (KB/s)

=

0 100 200 300 400 500
Upload capacity (KB/s)

Figure 4: Expectation of download performance as a
function of upload capacity. Although this represents a
small portion of the spectrum of observed bandwidth ca-
pacities, ~80% of samples are of capacity < 200 KB/s.

Key Figure

N
-]
o

300 - 80% of users receive more rad —

than they give...

200 | Ly
70% of capacity comes

from high capacity users

Expected download rate (KB/s)

100 Expected performance
o L=~ | Perfect fairness — - - —-
0 100 200 300 400
Upload capacity (KB/s)

http://www.michaelpiatek.com//papers/BitTyrant_affiliates.pdf

BitTyrant Paper

» Claim much of performance due to “altruistic” reasons

» Build “strategic” BitTorrent client called BitTyrant which achieves better
performance than other clients

» Focus on number of peers to unchoke and how much to upload to each

Observed download rate (KB/s)

Active set size

180
160
140
120
100

& 8

180
160
140
120
100

80

60

20

1 L I | I 1

50 100 150 200 250 300
Measured equal split capacity (KB/s)

| | Reference BitTorrent default

Rate maximizing ==---

500 1000 1500
Upload capacity (KB/s)

2000

» Diminishing returns to sharing more

with a single peer

- So modify active set size to
maximize download speed

For each peer p, maintain estimates of expected download
performance d, and upload required for reciprocation .

Initialize u, and d,, assuming the bandwidth
distribution in Figure 2.

dyp 1s initially the expected equal split capacity of p.

Uup 18 1nitially the rate just above the step in the
reciprocation probability.

Each round, rank order peers by the ratio d; /u, and unchoke
those of top rank until the upload capacity is reached.

At the end of each round for each unchoked peer:
If peer p does not unchoke us: up < (1 + &)up
If peer p unchokes us: d,, < observed rate.

If peer p has unchoked us for the last r rounds:
up — (1= 7)up

Figure 9: BitTyrant unchoke algorithm

Performance

Cumulative fraction
=
in
|

03 | BitTyrant -------- -
0.2 + Original]
0.1 - BitTyrant, capped ----- .
0 | | [[

0 500 1000 1500 2000 2500

Time (seconds)

Bittorrent Questions

» Why not seed to people who share more (maybe add got-from or tree
hierarchy to have messages)

» Is Rarest First piece selection the best?
» Why TCP?

BitTyrant Questions

» Why pose as evil

BitTorrent extras

» Super-Seeding
» Peer Exchange

» Local Peer Discovery

