
Congestion Avoidance
and Control

Van Jacobson
Michael J. Karles

SIGCOMM ‘88

Outline:
INTRODUCTION:
Conservation of packets

principle in TCP PROBLEM SOLUTION

Connection doesn’t get to
equilibrium

Getting to equilibrium: Slow-
start

Injecting a new packet before
an old packet has exited Conservation at equilibrium:

Round-trip timing

Equilibrium can’t be reached
due to resource limits along

the path

Adapting to the path:
Congestion avoidance

Conservation of packets in TCP
At equilibrium: inject packet into network

only when one is removed
P

P

A
A

ReceivSend

A

window size = # of packets in flight

• Rate control by sliding window:
• self clocking, adjusted to bandwidth
• wide dynamic range
• transmission is smooth, once it is smooth

Issues:
• Needs to get to equilibrium, while:
• avoiding sending burst of packets
• avoiding retransmissions

Time

S
eq

ue
nc

e
N

o

Packets

Acks

Problem 1: getting to equilibrium
Slow-Start:

• Add a congestion window cwnd
• when restarting, set cwnd=1
• send min(cwnd,window size) packets
• Increase cwnd by 1 for each ACK received

Time

S
eq

ue
nc

e
N

o

Duplicate Acks

Retransmission
X

2 CONSERVATIONAT EQUILIBRIUM: ROUND-TRIP TIMING 5

Figure 3: Startup behavior of TCP without Slow-start

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

•••
•••
•••
•••

•

•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•• •••

•••
•••

•••
•••
•••
•••

• •••
•••
•••
•••
•••
•••
•••
•••
•••
•••
••

•
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••
•

•
•••
•••
•••
•••
•••
•••
•••
•••
•••
•••

• •••
•••
•••
•••
•••
•••
•••
•••
••••
•••
•

•

•••
•••
•••
•••
•••
•••
•••
•

•
•••
•••
•••
•••
•••
•••
• •••

•••
•••

Send Time (sec)

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r (

KB
)

0 2 4 6 8 10

0
10

20
30

40
50

60
70

Trace data of the start of a TCP conversation between two Sun 3/50s running Sun OS 3.5
(the 4.3BSD TCP). The two Suns were on different Ethernets connected by IP gateways
driving a 230.4 Kbps point-to-point link (essentially the setup shown in fig. 7). The win-
dow size for the connection was 16KB (32 512-byte packets) and there were 30 packets of
buffer available at the bottleneck gateway. The actual path contains six store-and-forward
hops so the pipe plus gateway queue has enough capacity for a full window but the gateway
queue alone does not.
Each dot is a 512 data-byte packet. The x-axis is the time the packet was sent. The y-
axis is the sequence number in the packet header. Thus a vertical array of dots indicate
back-to-back packets and two dots with the same y but different x indicate a retransmit.
‘Desirable’ behavior on this graph would be a relatively smooth line of dots extending
diagonally from the lower left to the upper right. The slope of this line would equal the
available bandwidth. Nothing in this trace resembles desirable behavior.
The dashed line shows the 20 KBps bandwidth available for this connection. Only 35%
of this bandwidth was used; the rest was wasted on retransmits. Almost everything is
retransmitted at least once and data from 54 to 58 KB is sent five times.

first-hop gateway sees a burst of eight packets delivered at 200 times the path bandwidth.
This burst of packets often puts the connection into a persistent failure mode of continuous
retransmissions (figures 3 and 4).

2 Conservation at equilibrium: round-trip timing

Once data is flowing reliably, problems (2) and (3) should be addressed. Assuming that
the protocol implementation is correct, (2) must represent a failure of sender’s retransmit
timer. A good round trip time estimator, the core of the retransmit timer, is the single most

2 CONSERVATIONAT EQUILIBRIUM: ROUND-TRIP TIMING 6

Figure 4: Startup behavior of TCP with Slow-start

• •• ••• ••••• ••••••
•• ••••••

••••• ••••••
••••••
••••• ••• ••••••

••••••
••••••
••••••
• ••••••

••••••
••••••

••••••
••••••

•• •••• ••••••
••••••

••••••
••••••
••• • ••••••

•••• ••••••
••••••
••••••

••••••
••••••

•• ••••••
••••••

••••••
••••••

••••••
•• ••••••

••••••
••••••

••••••
••••••

•• ••••••
••••••

••••••
••••••

••••••
• ••• ••••••

• ••••••
••••••

••••••
••••

Send Time (sec)

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r (

KB
)

0 2 4 6 8 10

0
20

40
60

80
10

0
12

0
14

0
16

0

Same conditions as the previous figure (same time of day, same Suns, same network path,
same buffer and window sizes), except the machines were running the 4.3+TCP with slow-
start. No bandwidth is wasted on retransmits but two seconds is spent on the slow-start
so the effective bandwidth of this part of the trace is 16 KBps — two times better than
figure 3. (This is slightly misleading: Unlike the previous figure, the slope of the trace is
20 KBps and the effect of the 2 second offset decreases as the trace lengthens. E.g., if this
trace had run a minute, the effective bandwidth would have been 19 KBps. The effective
bandwidth without slow-start stays at 7 KBps no matter how long the trace.)

important feature of any protocol implementation that expects to survive heavy load. And
it is frequently botched ([26] and [13] describe typical problems).

One mistake is not estimating the variation, σR, of the round trip time, R. From queuing
theory we know that R and the variation in R increase quickly with load. If the load is ρ
(the ratio of average arrival rate to average departure rate), R and σR scale like (1−ρ)−1.
To make this concrete, if the network is running at 75% of capacity, as the Arpanet was in
last April’s collapse, one should expect round-trip-time to vary by a factor of sixteen (−2σ
to +2σ).

The TCP protocol specification[2] suggests estimating mean round trip time via the low-
pass filter

R← αR+(1−α)M

where R is the average RTT estimate, M is a round trip time measurement from the most
recently acked data packet, and α is a filter gain constant with a suggested value of 0.9.
Once the R estimate is updated, the retransmit timeout interval, rto, for the next packet sent
is set to βR.

Conservation at equilibrium

Retransmission timeout (RTO):
• wait before retransmitting
• Needs RTT estimate
• Not estimating variance

Problem: Injecting a new packet before
an old packet has exited

Rn+1 ↵Rn + (1� ↵)Mn

Result: poor RTT estimate
 (become critical under heavy load)

�RTT

(� = 2)

Solution: estimate , consider the
variance of RTT

�

3 ADAPTING TO THE PATH: CONGESTION AVOIDANCE 8

Figure 6: Performance of a Mean+Variance retransmit timer

•

• • • •

•
•

• •

• •

• •
•
•
• •

• •

•
•
• • • • •

•

•
• •

• • • • •

• • •

•
•

• • • • • •

• •

• • •

• •
•

•

• •
•
•

• •
•

•

• •
•

•
• • •

•
• •

•
•
•

• •

•
• •

•
• •

• •

•
•

• • •

• • •

•

•

•
•

•

• •

Packet

R
TT

 (s
ec

.)

0 10 20 30 40 50 60 70 80 90 100 110

0
2

4
6

8
10

12

Same data as above but the solid line shows a retransmit timer computed according to the
algorithm in appendix A.

To finesse a proof, note that a network is, to a very good approximation, a linear system.
That is, it is composed of elements that behave like linear operators — integrators, delays,
gain stages, etc. Linear system theory says that if a system is stable, the stability is expo-
nential. This suggests that an unstable system (a network subject to random load shocks
and prone to congestive collapse5) can be stabilized by adding some exponential damping
(exponential timer backoff) to its primary excitation (senders, traffic sources).

3 Adapting to the path: congestion avoidance

If the timers are in good shape, it is possible to state with some confidence that a timeout in-
dicates a lost packet and not a broken timer. At this point, something can be done about (3).
Packets get lost for two reasons: they are damaged in transit, or the network is congested
and somewhere on the path there was insufficient buffer capacity. On most network paths,
loss due to damage is rare (≪1%) so it is probable that a packet loss is due to congestion in
the network.6

showing that no collision backoff slower than an exponential will guarantee stability on an Ethernet. Unfortu-
nately, with an infinite user population even exponential backoff won’t guarantee stability (although it ‘almost’
does—see [1]). Fortunately, we don’t (yet) have to deal with an infinite user population.

5The phrase congestion collapse (describing a positive feedback instability due to poor retransmit timers) is
again the coinage of John Nagle, this time from [23].

6Because a packet loss empties the window, the throughput of any window flow control protocol is quite
sensitive to damage loss. For an RFC793 standard TCP running with window w (where w is at most the
bandwidth-delay product), a loss probability of p degrades throughput by a factor of (1+2pw)−1. E.g., a 1%
damage loss rate on an Arpanet path (8 packet window) degrades TCP throughput by 14%.
The congestion control scheme we propose is insensitive to damage loss until the loss rate is on the order of

the window equilibration length (the number of packets it takes the window to regain its original size after a
loss). If the pre-loss size is w, equilibration takes roughly w2/3 packets so, for the Arpanet, the loss sensitivity

2 CONSERVATIONAT EQUILIBRIUM: ROUND-TRIP TIMING 7

Figure 5: Performance of an RFC793 retransmit timer

•

• • • •

•
•

• •

• •

• •
•
•
• •

• •

•
•
• • • • •

•

•
• •

• • • • •

• • •

•
•

• • • • • •

• •

• • •

• •
•

•

• •
•
•

• •
•

•

• •
•

•
• • •

•
• •

•
•
•

• •

•
• •

•
• •

• •

•
•

• • •

• • •

•

•

•
•

•

• •

Packet

R
TT

 (s
ec

.)

0 10 20 30 40 50 60 70 80 90 100 110

0
2

4
6

8
10

12

Trace data showing per-packet round trip time on a well-behavedArpanet connection. The
x-axis is the packet number (packets were numbered sequentially, starting with one) and
the y-axis is the elapsed time from the send of the packet to the sender’s receipt of its ack.
During this portion of the trace, no packets were dropped or retransmitted.
The packets are indicated by a dot. A dashed line connects them to make the sequence eas-
ier to follow. The solid line shows the behavior of a retransmit timer computed according
to the rules of RFC793.

The parameter β accounts for RTT variation (see [5], section 5). The suggested β = 2
can adapt to loads of at most 30%. Above this point, a connection will respond to load
increases by retransmitting packets that have only been delayed in transit. This forces the
network to do useless work, wasting bandwidth on duplicates of packets that will eventually
be delivered, at a time when it’s known to be having trouble with useful work. I.e., this is
the network equivalent of pouring gasoline on a fire.

We developed a cheap method for estimating variation (see appendix A)3 and the re-
sulting retransmit timer essentially eliminates spurious retransmissions. A pleasant side
effect of estimating β rather than using a fixed value is that low load as well as high load
performance improves, particularly over high delay paths such as satellite links (figures 5
and 6).

Another timer mistake is in the backoff after a retransmit: If a packet has to be retrans-
mitted more than once, how should the retransmits be spaced? For a transport endpoint
embedded in a network of unknown topology and with an unknown, unknowable and con-
stantly changing population of competing conversations, only one scheme has any hope
of working—exponential backoff—but a proof of this is beyond the scope of this paper.4

3We are far from the first to recognize that transport needs to estimate both mean and variation. See, for
example, [6]. But we do think our estimator is simpler than most.

4See [8]. Several authors have shown that backoffs ‘slower’ than exponential are stable given finite popula-
tions and knowledge of the global traffic. However, [17] shows that nothing slower than exponential behavior
will work in the general case. To feed your intuition, consider that an IP gateway has essentially the same
behavior as the ‘ether’ in an ALOHA net or Ethernet. Justifying exponential retransmit backoff is the same as

Congestion avoidance
Packet lost

• usually due to insufficient buffer

capacity in a congested network

Main Problem: equilibrium cannot be reached

Solution: multiplicative window
size decrease on congestion

Problem 2: The network does not tell us

if the connection using less bandwidth

than it can
• Need to gradually increase bandwidth
• Overestimating bandwidth is costly

Droped packet = congested network

Problem 1: In a congested network

queue length increases

exponentially
Solution: additive widow size

increase (by one packet per RTT)

1. On timeout set cwnd = cwnd/2
2. on each ACK set cwnd=cwnd+1/cwnd
3. send min(receiver_wnd,cwnd)

