Congestion Avoidance and Control

Van Jacobson Michael J. Karles

SIGCOMM '88

Outline:

INTRODUCTION: Conservation of packets principle in TCP

Connec

Injecting a an old

Equilibriu due to re

PROBLEM

SOLUTION

tion doesn't get to	Getting to equilibrium: Slow
equilibrium	start
a new packet before	Conservation at equilibrium
packet has exited	Round-trip timing
Im can't be reached esource limits along the path	Adapting to the path: Congestion avoidance

Conservation of packets in TCP

At equilibrium: inject packet into network only when one is removed

- Rate control by sliding window:
- self clocking, adjusted to bandwidth
- wide dynamic range
- transmission is smooth, once it is smooth

Issues: 0

- Needs to get to equilibrium, while:
- avoiding sending burst of packets
- avoiding retransmissions

window size = # of packets in flight

Time

Problem 1: getting to equilibrium

Slow-Start:

- Add a congestion window cwnd
- when restarting, set cwnd=1
- send min(cwnd,window size) packets
- Increase cwnd by 1 for each ACK received

Slow Start with discrete packet flights

Figure 3: Startup behavior of TCP without Slow-star

Conservation at equilibrium

Problem: Injecting a new packet before Solution: estimate β , consider the an old packet has exited variance of RTT

Retransmission timeout (RTO):

- wait βRTT before retransmitting
- Needs RTT estimate $R_{n+1} \leftarrow \alpha R_n + (1 \alpha)M_n$
- Not estimating variance $(\beta = 2)$

Result: poor RTT estimate (become critical under heavy load)

Performance of an RFC793 retransmit tir

Performance of a Mean+Variance retransm

Congestion avoidance Main Problem: equilibrium cannot be reached

- Packet lost
 - usually due to insufficient buffer capacity in a congested network
- **Droped packet = congested network**
- Problem 1: In a congested network

queue length increases

exponentially

Solution: multiplicative window size decrease on congestion

- **Problem 2:** The network does not tell us if the connection using less bandwidth than it can
 - Need to gradually increase bandwidth
 - Overestimating bandwidth is costly Solution: additive widow size increase (by one packet per RTT)
 - On timeout set cwnd = cwnd/2
 - on each ACK set cwnd=cwnd+1/cwnd 2.
 - send min(receiver_wnd,cwnd) З.

