Chord: A Scalable Peer-to-Peer Lookup Service for Internet Applications

> Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, Hari Balakrishnan CS344G class presentation

> > February 4, 2015

The landscape

Goal Distributed lookup table

Existing/competing implementations

- DNS
- Freenet storage system
- Plaxton protocol
- CAN

Features

- Load balance
- Decentralization
- Scalability
- Availability
- Flexible naming

Features

- Load balance
- Decentralization
- Scalability
- Availability
- Flexible naming

Potential applications

- Cooperative mirroring
- Timeshared storage
- Distributed indices
- Distributed computation

Chord protocol

Assume keys are mapped to a particular node

Components

- Finding location of keys
- Handling nodes joining/exiting system
- Handle state inconsistencies/suboptimality

Location of keys

Location of keys

2

Location of keys

Provides scalable key location with $O(\log N)$ entries in finger table

Node joining/leaving

Invariants

- Each node's successor is correctly maintained
- For every k, successor(k) is responsible for k

Node joining/leaving

Invariants

- Each node's successor is correctly maintained
- For every k, successor(k) is responsible for k

Theorem

Any node joining/leaving the network can use $O(\log^2 N)$ messages to establish the invariants and finger tables

Some other considerations

- Stabilization
- Concurrent joins/failures

Load balancing with virtual nodes

Path length of lookup query

Simultaneous node failure

